EPSRC Vacation Bursary

A Practical Investigation Into Modern Pattern Matching

Techniques

Ben Smithers

September 15, 2010

1 Introduction

Over recent years, there have been many theoretical advances in approximate
pattern matching. The aim of this project has been to consider how these
advances perform in practice, with the general aim of comparing the methods
against a naive approach in order to determine at what input sizes they
become practical.

Approximate pattern matching considers searching areas of a text string
for areas which are ‘similar’ to a given pattern. Because there are such a vast
number of different measures of similarity and algorithms for solving these
problems, it is clearly beyond the capabilities of one person or project to hope
to consider all of them. Hence this project has also included the founding
of an online Wiki, StringPedia (http://stringpedia.bsmithers.co.uk), in the
hope that others will join this initiative helping to create both a library
of code to solve these various problems and a body of knowledge into the
practical aspects of the solutions.

The particular problems considered during this project were the exact
matching with don’t cares problem and the k-mismatches problem. The
problems, their solutions and the outcome of the practical analysis will be
discussed in sections 2 and 3. Section 4 details some of the work there was
insufficient time to complete and immediate open questions generated from
this work. In section 5, a brief overview of the library of code produced and
what it allows is given whilst I conclude with my thoughts on the project in
section 6.

2 Matching With Don’t Cares

2.1 The Problem

The exact matching problem is well studied [6]. It considers finding sub-
strings of a piece of text which exactly match the given pattern. Formally,
it may be defined as: given a text t of length n and a pattern p of length m,
determine if:

di<n-m+1:p=t,; VO<i<m

Exact matching with don’t cares considers the same problem with the
variation that the text and pattern may contain an arbitrary number of wild
card characters (denoted ‘7’ in this document), each of which match any
single character in the alphabet. In this way, the pattern approximately
matches the text at a given location. Formally the problem is to determine
if:

2.2 Solutions
2.2.1 Naive Method

The naive method simply considers all O(n) possible alignments of the pat-
tern against the text, checking each until a mis-match is found. It has a time
complexity of O(nm).

2.2.2 FFT-Based Methods

In these algorithms, the text and pattern are considered to be strings of
integer values (the ASCII value of each character, for example). After this
integer conversion, it is easy to see that an exact match (with no wild cards)
would occur between p[0...m — 1] and t[i...7 +m — 1] if and only if:

—_

e
(pi = tis)* =0
5=0
In order to accommodate wild-cards, this summation may be altered in
order to ‘mask’ characters which are not wildcards. For example, if wildcards
are encoded as a 0 during the integer conversion, then an approximate match

would occur between p[0...m — 1] and ¢[i...7i + m — 1] if and only if [3]:

m—1
ijtiﬂ'(pi —tirj)? =0
=0

In this way, if either p; or t,;_; are a wildcard, this element of the
summation will be 0, indicating that the characters match. Similarly, if
neither character are a wildcard, but the characters do match, then (p; —
titj—1)? = 0 thus this element of the summation is 0, indicating that the
characters match. Otherwise, if the characters do not match and neither
are wildcards, then this element of the summation will be strictly positive.
Hence the text substring matches the pattern if and only if all elements of
the summation are equal to 0 and thus sum to 0.

The utility of this summation becomes more obvious after expanding the
products and including the results in an array S, such that S; = 0 if and only
if there is an approximate match between p[0...m — 1] and t[i...i+m —1].
We then have:

S; = (p?ti—i-j - 2p32't22+j—1 +Pjt§+j)
=0

Thus we require the computation of three correlations each of which can
be determined by computing a convolution after apply the Fast Fourier Trans-
form (FFT). This takes O(nlogn) time.

The time complexity can be further improved to O(nlogm) time by ap-
plying a standard trick: the text is split into n/m substrings of size 2m each
of which overlap the previous substring by m characters before performing
the same computation on each of the substrings [3]. The time complexity is
thus:

O((n/m)mlogm) = O(nlogm)

We note that this overlap is necessary, otherwise we would not find oc-
currences of the pattern which overlap two substrings of the text.

Whilst not reducing the theoretical time complexity, practical improve-
ments can be made by reducing the number of required convolutions through
the use of Monte Carlo methods. For example, in [12] Kalai shows how the
use of slightly different masking and the mapping of inputs to random values
can reduce the number of convolutions needed to 2 and if the case where there
are wild cards only in the pattern then only one convolution is needed (sim-
ilarly, the deterministic method only needs two convolutions in this special
case as we no longer need to multiply by the ‘mask’ of the text)

2.2.3 Number Theoretic Methods

One potential problem with the use of the Fourier Transform is that it uses
floating-point arithmetic. Hence floating point errors may be a problem. For
example, a match starting at index ¢ of the text occurs if S; = 0. However,
because floating-point arithmetic is used, we must actually report a match if
S; < a, where « is some small constant. However, if the maximum possible
floating point error that can be generated from the process is greater than «
then a match could be missed.

The use of number theoretic methods addresses this issue by only using
integer-based arithmetic. Thus this approach involves computing the same
products and summations as in the FFT-based methods; the difference is
that instead of using FFTs to compute correlations, integer multiplication
algorithms are used. The run-time is thus dependent on the particular algo-
rithm used. The library that was used in the implementation of this method
selected the algorithm to use based on the inputs and their sizes, choosing
from Karatsuba, Schonhage-Strassen and others [11].

2.3 Practical Issues In Implementation

A number of issues arose during implementation some of which either affected
or provided variations on the implementation.

2.3.1 Getting The Best Out Of FFTW

The well-known library FFTW (Fastest Fourier Transform in the West) was
used to perform optimized Fourier Transforms. One of the reasons that the
library is so fast is because it ‘plans’ each transform — essentially working out
how best to break the problem down into smaller tasks that it can solve very
efficiently and setting appropriate ‘twiddle factors’; all the while taking into
account the system architecture (FFTW calls its knowledge on how to per-
form transforms ‘Wisdom’). However, in order to properly plan a particular
transform, many sets of smaller problems are worked out and in fact bench-
marked thus this is a time consuming process. FFTW does though provide
a mechanism for planning transforms in advance, although the performance
may not be quite as good as a transform planned and measured at run-time.

In addition, transforms is which the number of elements is a power of 2
may be computed more efficiently. Thus generating Wisdom for transforms
of size 2* for a range of k and then padding inputs with Os so that the number
of elements is a power of 2 was shown to be effective. In addition, FFTW’s
benchmarks show that, for transforms which are not powers of 2, the speed

the transform operates is quite varied.

40 i i

[
FFT (nlogn) —+—
35 FFT (n log n), padded to a power of 2 —<—
FFT (n log m), using Wisdom —*%—

30

25

20

run time (s)

15 =+

10 =+

215 216 217 218 219 220 221
text size
Figure 1: The effect of padding and Wisdom on the run-time of the

O(nlogm) method with text sizes that are a power of 2, or very close to
a power of 2. The pattern size was fixed at 100.

7 I I I
FFT (nlogn) —+—
6 FFT (n log n), padded to a power of 2 —<— | |
FFT (n log m), using Wisdom —X—
5
Z 4 g
5]
£
E 3
2 /
1
0
262141 262142 262143 262144 262145 262146 262147

text size

Figure 2: Figure 1, zoomed in at 2'® = 262144

Figures 1 and 2 demonstrate a number of points. Firstly, as was men-
tioned above, the run-time of the transform is very erratic when the size is
not a power of 2 — changing the number of elements by just one can increase
the run-time by as much as a factor of 5! Second, we can see that in the
case where the transform size is just over a power of 2, then padding can
result in a slightly slower run-time than the unpadded case. However, if the
pre-generated Wisdom is allowed, then these are always faster than the un-
padded case, even when the transform is padded by a large amount. Lastly,
and perhaps expectedly, the run-times of the two padded methods show a
kind-of stepping behavior — as the size of the text increases past each power
of two, the size of the transform is also increased to the next power of 2,
hence we see a step which roughly doubles the run-time.

In addition to using Wisdom to improve performance, FF'TW supports a
wide variety of transforms. All transforms were originally ‘Real-to-Complex’
and ‘Complex-to-Real’, which allows exploitation of certain factors because
all input is real. FFTW claims this is roughly twice as fast as the standard
DFT. Some further improvements were made through the use of ‘Real-to-
Half-Complex’ and ‘Half-Complex-to-Real’ transforms, which were found to
generally increase performance by a small factor. These transforms exploit
the symmetry in the output of DF'T's where the input is real, thus reducing the
number of required multiplications to perform the convolution. Performance
benefits did vary, though this has never been found to have a negative impact.
Differences in how optimal the generated plans actually were may well be the
case of this variation, though this is only speculation.

2.3.2 Run-Time Quirks Of The O(nlogm) FFT-based Method

Early on during the investigation, it was noted that the performance of the
O(nlogm) methods (in which the text is split into substrings of size 2m) was
very erratic, especially for very small transform sizes. As figure 3 demon-
strates, the run-times of both O(nlogn) methods (with and without Wis-
dom) are unaffected by the pattern size, whilst all three O(nlogm) methods
(with Wisdom, with padding and without either) show erratic run times as
m increases, before becoming steady as m becomes larger than 1000-2000.

25

[
FFT (nlogn) —+—
FFT (n log n), using Wisdom —<—
;Aif FFT (nlog m) —%—

20 f[

\ FFT (n log m), padded
\ FFT (n log m), using Wisdom —l—

run time (s)

0 500 1000 1500 2000 2500 3000

pattern size

Figure 3: Comparison of FFT-based methods showing erratic behavior with
small pattern sizes. The text size was fixed at 22! = 2,097, 152

Clearly the unpadded case could be attributable to the previously noted
behavior of FF'TW with non-powers of 2, but this does not explain the padded
cases. However, it was eventually found that the likely cause of this was
another quirk of FFTW (and Fourier Transform algorithms in general) which
appear to operate at a higher speed for medium sizes transforms when the
transform sizes are a power of 2. Figure 4 shows the speed achieved by
various FFT algorithms in FFTW’s benchmarks for transforms that are a
power of 2 on one particular architecture (further examples can be found
here: http://www.fftw.org/speed/).

double-precision real-data, 1d transforms

powers of two
2000

= --m ffiw3-rlr
o—e fftw3 cut-of-place
w..a ffw3 in-place
— intcl-ipps
[3—f] ooura-sg
—=a intel-mkl-dfti cut-of-place
—s green
@ == fhtreal
dfftpack
fxt-fht-real
&8 bloodworth
— — kissftt
sciport
emayer

1500

1000

rmayer-simple

speed (mflops)

jrnftc

cwplib

500/

Figure 4: Graph from FFTW’s benchmarks taken from:
http://www.fftw.org/speed /PentiumM-1.6 GHz-gce/

Given that there are a huge number of transforms being performed when
the text is large and the pattern is short, even small variations in the speed
of the transforms could have large effects on the overall run-time. Thus a
minimum size for the substring of 2!' = 2048 was imposed i.e. no substring
of the text was shorter than 2048 (assuming the text was sufficiently long)
and the pattern was padded further if necessary.

2.4 Run-Time Analysis
2.4.1 Methodology
e Computer Specifications
— 2x Intel Xeon 1700Mhz Processors

— 2GBs of memory
— Running 32 bit Ubuntu 9.10 (Karmic Koala)

e Compiler: gec 4.4.1

e Flags: -Wall -pedantic -std=c99 -O2

The text was generated as ™"~ 'b and the pattern as a™ b, ensuring worst-
case performance. Note that although neither text nor pattern contain wild-
cards in this case, the presence (or lack of) wildcards should have no effect
on run times, but leaving them out does allow a comparison against methods
where we assume there are no wild cards in the text. Fach test was run 7
times and an average taken.

2.4.2 When Is Naive Really Naive?

Figure 5 demonstrates run-times of various FFT-based methods, the FLINT
library for number theory and the naive approach for small pattern sizes,
showing the points at which the naive method becomes slower than others.
The main findings are:

e The best O(nlogn) approach in this case is the real-to-real transform
using Wisdom, which runs faster than the naive method for m g 300

e The best O(nlogm) approach in this case is the real-to-real transform
with a forced minimum sub-string size ad Wisdom, which runs faster
than the naive method for m g 80

e If we consider the variation where we only allow wild-cards in the pat-
tern and not the text these bounds are further lowered to 200 and 50
respectively.

e The worst FFT-based approach by far is in fact the only FFT-based
method which did not use Wisdom. Given a dedicated searching ap-
plication, however, it seems reasonable that time to generate Wisdom
before-hand would be available.

e The FLINT library doesn’t outperform the naive method until m Z 800

These observations seem to hold within reasonable bounds for other text
sizes. Graphs of different text sizes can be found at StringPedia: http://
stringpedia.bsmithers.co.uk/index.php?title=Exact_Pattern_Matching With_
Don%27t_Cares#List_0f_Graphs

9z1s uraped

(s) owmn unx

0001 008 009 00¥ 00¢
| | W R
. = I R VA 1“\\MW\|A\# ~ J\\@\%\Lﬂ\n\y
W\\ﬂ‘\ﬂ\\%\\
N 7 \.N
—o—6 6 6 o o o o6 o6 66— 660 O%\ o—o6©
v
¥——HK——K—x —RK *
l\fﬁx O oo— o2 S
_\
—S— (ILNITA) K109y, Joquuiny —O— IX9 U] SPIIA ON ‘WOPSIA “(u 0] U) LA
X3, U] SPIIAA ON “YT¥ ‘WOPSIA “(wr Sof u) LA —— 7Y ‘WopsIp ‘(u 301 u) LA
1 X3, U SPIIA ON ‘WOPSIA ‘(W S0 U) I A X3, U SPIIM ON ‘(U S0] U) LA
A2y ‘wopsip ‘(w301 u) L4 —¥— Yo ‘(u3o[u) 144
—7— WopsIA ‘(w 3o[u) 14 —>— WopsIp ‘(u 3o[u) I 4]
1X9T, U SPIIM ON “J7¥ ‘WOPSIA ‘(U 30[U) 144 —+— QAN
I I I

Figure 5: Graph showing the comparison of a number of methods vs the naive approach.

The point at which the FFT-based methods (and, indeed, the Number
Theoretic approach, thought this was not explored) can be further lowered
using Monte Carlo Methods, as outlined in section 2.2.2. Figure 6 shows the
results:

e For wildcards in both text and pattern, the point at which the naive
method becomes slower is reduced from around 80 to about 45

e If wildcards are only in the pattern, it is reduced from around 50 to

about 25
2.2]]
Naive —+—
2N FFT (nlog m), R2R —>—
18 1 FFT (n log m), R2R, No Wilds In Text —x—
' Randomized FFT, (n log m),R2R =
1.6 H Randomized FFT, (n log m), R2R, No Wilds In Text —l—
1.4
% 12 XX WM;% Ty
g
= 1 sl
5 A
] K
O I e ket T sk Rk FH KK
0.6 -
04 %W
0.2 4/
0
0 20 40 60 80 100 120 140

pattern size

Figure 6: Graph showing the run-times of randomized algorithms versus the
naive method. Two deterministic methods are also included for comparison

Finally, it may be worth noting that, for a fixed text size, the run-time
of the naive approach is linear in the pattern size only if m < n. This
is because the asymptotic notation hides some of the detail — there are in
fact n — m + 1 possible alignments of the pattern with the text, each of
which requires m comparisons in the worst case, resulting in a worst-case of
nm —m?+m comparisons. In practice, this means the run-time of the naive
method beings to plateau and will eventually start to reduce. Consider, for
example, the case where m = n: there is only 1 alignments and hence only
m comparisons are needed in the worst case. However, for most applications
the pattern is likely to be much shorter than the text, so this caveat is of
little interest.

11

2.4.3 Performance Of Number Theoretic Approach

As was shown in the previous section, the number theoretic library performed
worse than any of the FFT-based methods for small pattern sizes. Figure
7 shows that this trend continues for larger pattern sizes. As it shows, the
performance is much worse than the FFT-based methods and also does vary
to some extent; probably due to changes in the algorithm selection. Whether
or not this performance difference shown is due to the libraries themselves
(i.e. perhaps another number theoretic library exists that performs better)
or due to the differences in inherent differences in the methodology it is hard
to say, however.

FFT (nlogn) —+— w
FFT (nlog m) —>— %ZXZ/
Number Theory (FLINT) —%—
) ();4;%@@2% M WW
- 15
Q
£
=
2 10
5“;\\\;\\\ (0 NV N N A A A v N AT A N Tttt f T T
WM
0
0 200000 400000 600000 800000 le+06 1.2e+06

pattern size

Figure 7: Graph showing the run-time of the number theory library, com-
pared to two FFT-based methods (both using Wisdom) for larger pattern
sizes.

2.4.4 O(nlogn) vs O(nlogm)

Figure 8 shows run-times for a variety of FFT-based methods. It includes
4 variations: Standard, R2R (using the ‘Real-to-Half-Complex’ and ‘Half-
Complex-to-Real’ transforms), the special case of no wilds in the text, and
a combination of R2R and no wilds in the text. Each of these are shown in
O(nlogn) and O(nlogm) algorithms.

12

run time (s)

N N N 7 N N N N N S N
S S NUNVNUN A A

FFT (nlogn) —+—
FFT (nlogn), R2R —x—]
FFT (n log n), No Wilds In Text —%—
FFT (n log n), R2R, No Wilds In Text L
FFT (nlogm) —l—
FFT (nlog m), R2R —6—
FFT (n log m), No Wilds In Text
FFT (n log m), R2RNo Wilds In Text —4—
[[

0 200000 400000 600000 800000 1e+06 1.2e+06

pattern size

Figure 8: Graph showing the run-time of various FF'T methods for larger
pattern sizes. All use Wisdom, and all O(nlogm) methods use a minimum
sized transform.

The first thing to notice is that all versions of the O(nlogm) algorithm
are susceptible to variations in run-time, even though they all have sub-
strings padded to a power of 2. The reason for this seems to be explained
by the fact if a given m is far’ from a power of 2 it must then be rounded
considerably, whereas if m is 'close’ to a power of 2, it is only rounded a small
amount. Because the overlap between text substrings is maintained at m, this
results in less relative overlap in the former case and hence less overlapping
substrings are required in total to cover all of the text. As m grows, these
variations become less and instead we observe the perhaps expected behavior
of run-time being unaffected by changes in m between each power of 2.

Next we consider the point at which the O(nlogm) algorithms become
slower than their equivalent O(nlogn) counterparts. In each of the 4 varia-
tions outlined above, the cross-over point is when m =~ n/4.

Finally, although not shown in this graph, we should note that if m
increases further past n/2, we would see that the run-time of the O(nlogm)
algorithm becomes significantly worse than that of the O(nlogn) algorithm.
This is because the text substrings which are of length 2m are now greater
than n, and so we are now computing transforms larger than n, whilst the
O(nlogn) only computes transforms of size n.

13

3 K-Mismatches

3.1 The Problem

K-Mismatches considers a different kind of approximate matching. We are
once again given a text t of length n and a pattern p of length m. But
rather then giving explicit locations of characters which are allowed to match
anything (don’t care characters) it specifies a parameter k and says that a
match occurs between the pattern and a substring of the text if all of the
characters match, except up to k of them. Further, it is required that we
report the number of mismatching characters only if it < k. Otherwise, we
say a match does not occur. In other words, for each alignment of the pattern
against the text, we must report the Hamming Distance if it is < k or that
no match has occurred otherwise.

As an example, we consider text ‘abacaa’ and pattern ‘acab’. Figure 9
shows the hamming distance and required output for the algorithm for each
alignment of the text against the pattern.

Text: abacaa abacaa abacaa
Pattern: acab acab acab
Hamming Distance: 2 4 1
Required Output: 2 No Match 1

Figure 9: An example of the required output for the k-mismatches problem
with text ‘abacaa’, pattern ‘acab’ and k = 2

In addition, we may also consider the special case where £k = m i.e. there
is no bound on the hamming distance, so we report it at every alignment.

3.2 Solutions
3.2.1 Naive Method

Like the naive solution to the matching with don’t cares problem, this method
follows straight from the description of the problem: we consider all O(n)
alignments of the text and pattern and count all of the mismatches at each
alignment, stopping if we find more than k of them. The time complexity is
O(nm).

14

3.2.2 Abrahamson’s/Kosaraju’s Method

This method given independently by Arahamson and Kosaraju is indepen-
dent of the value of k [1, 4, 13]. It reports the Hamming Distance at all align-
ments. There are two key ideas. The first is that the number of mismatches
is intrinsically linked to the number of matches — if we count matches, we
can determine the number of mismatches by subtracting this number from
m. The second idea is that we consider characters occurring ‘frequently’ and
those occurring ‘infrequently’ in the pattern in different ways.

Algorithm 1 - Frequent Characters: as we have seen in section 2.2.2,
for a text t of length n and a pattern p of length m, we can compute
Z;"_OI pitiy; for all 0 < i <n—m+1in O(nlogm) time using Fast Fourier
Transforms (FFTs). Now, for each frequently occurring character, we can
create a ‘mask’ of the text and pattern (we’ll call these ¢’ and p’ respectively).
For example, t; = 1 if ¢; is the frequent character under consideration and
0 otherwise. The pattern mask, p/, is created in the same way. The cre-
ation of these masks takes O(n) time. Thus the calculation of » 7" Lot w
for all ¢ yields the number of times this frequent character matches in each
alignment. If we repeat this for each frequently occurring character and add
the results (O(n) time), we now have the total number of matches involving
frequent characters and this takes time equal to O(nlogm) times the number
of characters which are frequent.

Algorithm 2 - Infrequent Characters: if a character doesn’t occur
frequently, then simply counting these occurrences is actually quite efficient.
This step requires the creation of an auxiliary array C' in which to store the
counts. The idea then is that for each infrequent character occurring at index
1 of the text we determine the each location j of this character in the pattern.
We then add one to C;_;. How long does this take? Clearly if we have to
check every index of the pattern then it will take O(nm) time.

But we can do better than that. We start by sorting the pattern in
O(mlogm) time (in fact, we must actually sort a data structure which also
maintains the original location of each character in the pattern so that we
can update the correct index of our auxiliary array, C'). In addition, we
maintain a second structure in which we insert the index of the first of each
character within our sorted array. If we are dealing with ASCII characters, a
simple array will probably suffice — for multi-byte characters we could employ
hashing to reduce memory and time overhead. Thus, for each infrequent
character occurring at index ¢ of the text, we can now lookup the starting
point in our sorted array (constant time) and we can then add to our auxiliary

15

array for each occurrence of this infrequent character. This step then takes
O(n) times the maximum number of occurrences of a character in the pattern
that is still ’infrequent’.

Putting It Together: We are then left with deciding how often a char-
acter needs to occur within the pattern to be frequent. If we say that a
character occurring at least b times is frequent, then the maximum number
of different characters that can be frequent is m/b. Thus the run-time of
the first algorithm is O((m/b)nlogm), whilst the run-time of algorithm 2 is
simply O(nb). The overall algorithm then runs in O((m/b)nlogm) + O(nb)
time. The best time complexity is thus achieved by setting b to minimize
this value. This gives b = y/mlogm to give an overall time complexity of
O(nv/mlogm).

The final detail then is to work out, for each character in the text, if it is
frequent or infrequent. Fortunately, this can be incorporated into the process
of creating our table that looks up the indexes of characters in our sorted
pattern — we must loop though our sorted pattern in order to generate this
anyway so we simply count the occurrences of each character and then store
a flag indicating the type of character along with the index of it’s location in
the sorted pattern.

3.2.3 Amir et al’s Method

Amir, Lewenstein, and Porat gave an algorithm which does only report the
Hamming Distance if it is < k and runs in O(ny/klogk) time [2]. The
following is a simplified version of the algorithm, which has a time complexity
of O(nvklogm) as presented in [4].

The algorithm is an extension of the Abrahamson/Kosaraju approach
outlined above. We start by defining a character to be frequent if it occurs
at least vk times in the pattern. We then separate into two cases.

Case 1 - Less than 2vk frequent characters: In this case, we sim-
ply apply the algorithm of Abrahamson/Kosaraju. How long does this
take? Setting b = vk in O((m/b)nlogm) + O(nb) as above would yield
O((m/vVk)nlogm) + O(nVk), however a neater bound can be found: since
there are at most 2v/k frequent characters, the total run-time of Algorithm
1is O(2vk - nlogm) = O(nvklogm). The total run-time for this case is
then O(nv'klogm + nvk).

Case 2 - At least 2k frequent characters: With this number of
frequent symbols, running Algorithm 1 on all of them becomes too expensive.

16

Instead, we add a filtering stage in order to reduce the number of possible
locations at which a k-mismatch can occur. We do this in a similar way to
the ‘counting’ seen in Algorithm 2 above — indeed, the operation is almost
exactly the same: we create an auxiliary array of counts, C'. Then, for each
frequent character occurring at index ¢ of the text we determine each location
j of this character in the pattern. We then add one to C;_;. However, we
only consider the first 2v/k different frequent characters (i.e. if the character
in the text is frequent, but not one of the first 2¢/k symbols that are frequent
we do nothing) and further only add to the auxiliary array for the first Vk
locations of each frequent character in the pattern. In practice, we can easily
modify the data structures (the sorted pattern coupled with each character’s
original location and the lookup of character type and starting position in the
sorted array) we used in Algorithm 2 (recall that we use these data structures
in order to work out which characters are frequent and hence how many are
frequent, so they will exist regardless of which case we are using). to suit our
purpose: we can traverse the sorted pattern and simply modify the character
type of the first 2v/k frequent characters to flag them in some other way.
After this ‘counting’ step, we can make the following two observations:

1. The total number of additions made to the auxiliary array C' can be
no more than nv/k, since at each of the n indexes of the text we match
at most vk occurrences of a frequent character

2. For any given alignment ¢, the maximum number of matches found (i.e.
;) is 2k - \/E, since we are considering a maximum of Vk positions
of exactly 2v/k symbols

From the second observation it follows that if a k-mismatch occurs start-
ing at a given index, the count at that index must be at least 2k — k = k, if
not, we have already found more than £ mismatches. Since there are a total
of nvk additions made to the auxiliary array, then a maximum of nvk /k
locations can have a count of at least k. Hence the filtering has now found
O(nVk/k) locations at which a k-mismatch can possibly occur.

The final step is to verify these potential locations. This requires the
creation of the generalized suffix tree of ¢ and p which is then processed to
allow linear-time Lowest Common Ancestor (LCA) queries. An LCA query
on a suffix tree is equivalent to finding the Longest Common Extension (LCE)
of two substrings [10]. The LCE of two strings is the length of the longest
match between them, starting at the beginning of each string. This method
of computation allows LCEs to be computed in constant time after linear
pre-processing (needed to create the Suffix Tree which supports constant

17

time LCA queries). Hence if we have found a potential k-mismatch starting
at index i of the text, we perform an LCE query between t[i---i + m] and
pl0...m], the result of which well call [. If I = m, we have found a k-
mismatch with a Hamming Distance of 0, otherwise we know the Hamming
Distance is at least one, since ¢;,;11 and p; + 1 did not match and so we find
LCE(t[i + {4+ 1---i 4+ m] and p[l + 1...m]). We repeat this until we either
find k£ + 1 mismatches or we reach the end of the pattern. In the latter case,
we’ve found a k-mismatch which we can then report.

Since the LCE queries take constant time, this verification stage take
O(k) time per location. Hence the running time of case 2 is O(nvk/k - k) =
O(nVk). This means that the running time of the whole algorithm is the
maximum of the two cases, which is case 1: O(nvklogm).

3.3 Avoiding The Use Of A Generalized Suffix Tree

A suffix tree is something of a heavy-weight data structure. While it can
be build in linear time and does support constant time LCA/LCE queries,
there are significant constant factors hidden. Further, the suffix tree is quite
memory hungry. One potential solution is to avoid building a generalized
suffix tree. Instead, we can build a suffix tree only of the pattern. In [10]
Gusfield describes how most of the functionality of a generalized suffix tree
can be achieved though the use of the suffix tree of the pattern and matching
statistics. In this project, a different approach was taken, using the work in
[5]. Here, the motivation was driven by the use of an online model of com-
putation: the pattern is given in advance, but the text arrives one character
at a time. Clearly a suffix-tree of the text is impractical. The method first
creates a suffix-tree of the pattern and then creates a representation of the
text (a so called p-representation) which can be updated as new characters
arrive. For completeness, a p-representation is a set of linked p-regions. A
p-region is a set of 3 integers: ¢, j and [which together represent a text
substring starting at index ¢ of length [, which is equal to a substring of the
pattern starting at index j. By building up these p-regions, we represent the
whole text in a p-representation. The key results of interest here are:

e A p-representation can be built in O(n) time (in fact, the p-representation
can be created with constant time updates for each character of the text
that arrives, but this is unnecessary here)

e Once built, the p-representation allows us to compute LCE queries
between the pattern and text by instead computing up to 3 pattern-
pattern LCE queries (i.e. LCE queries between two substrings of the
pattern) which only require the suffix tree of the pattern.

18

Unfortunately, there was little time for testing how the creation of a
suffix tree for the pattern and a p-representation compared to the creation
of a generalized suffix tree of the pattern and text. The testing that was
performed was very inconclusive and so this is an area where further work is
required.

3.4 Run-Time Analysis
3.4.1 Methodology

All tests were run on the same platform as outlined in section 2.4.1 with the
exception of some compiler flags (e.g. -DNDEBUG). However, the features
of the algorithms mean that constructing inputs is somewhat more difficult.
Generally, the aim has been to test worst-case behavior, but this is actually
quite difficult to achieve for the k-mismatch problem. The worst-case for
the nalve method occurs when the majority of the text and pattern are
a single character, with different characters occurring at the end of each
string. However, if inputs are constructed (as was the case for matching
with don’t cares) in this manner, this doesn’t provide a fair test because the
other algorithms are dependent on the alphabet size and the frequency of
occurrences of characters in the pattern. This dependence on the features
of the input lends itself more to testing with a corpus, however this does
mean that worst-case performance is not guaranteed (or, indeed, very likely
at all). Finally, it should be noted that this problem doesn’t apply for finding
the hamming distance at all locations as such: the naive method will always
have to do the same amount of work for a fixed n and m, regardless of the
alphabet size and makeup of the inputs. On the other hand, actual worst case
performance of the Abrahamson/Kosaraju method isn’t necessarily achieved.

3.4.2 Finding The Hamming Distance At All Alignments

We start by comparing the naive and Abrahamson/Kosaraju methods. Fig-
ure 10 shows a run-time comparison for small pattern sizes, using a corpus
of DNA data taken from the Pizza&Chili website [7]. The alphabet size is
hence 4, whilst the text size is 4, 345, 138.

19

7 I

Naive —+— |
6 Abrahamson/Kosaraju —x<— /

run time (s)

L+ 5 °
| //W
Wgé%/
0

0 50 100 150 200

pattern size

Figure 10: Graph showing the run-time of the two methods for finding the
hamming distance at all alignments. The number of different characters
matched using Algorithm 1 (with FFTs) is shown when it changes along the
graph. The text is from a DNA corpus, with an alphabet size of 4, and has
a length of 4,345, 138 characters

There are a number of interesting points. Firstly, in this case the naive
method only outperforms the more complex approach when the pattern size
is 5 and even then only by 0.01s. One of the reasons for this is that when the
pattern size is small and the overhead of performing FFTs is comparatively
large, the likelihood of a character occurring enough times to be frequent
in a randomly generated pattern is much lower than that at a large pattern
size. This is demonstrated in figure 11 which shows how the the number of
occurrences needed to be frequent changes with m (i.e. y/mlogm) and as
a percentage of m: ((v/mlogm)/m) - 100. This is reflected in the run-time
graph in figure 10, which shows when the number of characters matched
with FFTs changes along the graph. We notice that at m = 200, all 4 of
the alphabet characters are being counted with FFTs. This is unsurprising:
as figure 11 shows, a character needs to occur in roughly 20% of the pattern
with m = 200 and so with |X| = 4, this is quite likely.

20

W ‘ Length Re(‘]uired To Be Frequent ‘
70 K- Percentage Of Pattern Length Required To Be Frequent -------
60
50
40
30 e ——
ol e
10

0

0 50 100 150 200

pattern size

Figure 11: Graph showing how often a character needs to occur in order
to be frequent in the Abrahamson/Kosaraju method. The requirements as
shown as a number and as a percentage of the length of the pattern

However, this is not the whole story. For example, we can see variations
in run-time even when the number of characters matched with FFTs remains
the same. There are two reasons for this: firstly, regardless of how often a fre-
quent character occurs, the same amount of work is needed. Thus, a character
which occurs only just enough times to be considered frequent will have more
relative overhead than a character that occurs far more times. Secondly, and
perhaps far more importantly, ignoring the overhead of determining which
characters are frequent, Algorithm 2 only counts matches; it does not have
to do any work for mismatches. Thus, runtime variations as the makeup of
the pattern varies are to be expected and, more importantly, this offers the
explanation of why this method does so well compared to the naive approach:
the nalve method method always has to perform m - (n —m + 1) compar-
isons between the text and pattern i.e. it does the same work regardless of
whether or not the character matches or mismatches. This is demonstrated
further in figure 12, which compares the methods using input taken from an
English text sourced from Project Gutenberg. As the alphabet size is much
larger, less matches are likely to occur. Further, with a larger alphabet size a
character is less likely to occur the required number of times to be considered
frequent. These two facts increase the use of Algorithm 1 (matching with
counting) and the speed of Algorithm 1.

21

4 I
Naive —+—
3.5 LI Abrahamson/Kosaraju —><—

Pl

0.: /KM x>
A0

0 50 100 150 200

run time (s)
[}

pattern size

Figure 12: Graph showing the run-time of the two methods for finding the
hamming distance at all alignments. The text is from a English text with a
relatively large alphabet size and has a length of 4, 345, 138 characters

Finally, we may observe an interesting implication. With only small
changes to the implementation, the Abrahamson/Kosaraju method can han-
dle don’t care characters. Since finding the hamming distance at all locations
also tells us if there is an exact match at any given location, this method may
actually be useful for solving the exact matching with don’t cares problem for
small pattern sizes. There are two caveats to this: firstly, the methodology
in testing solutions to these two problems has been a little different: if this
method was used with the inputs given to the matching with don’t cares al-
gorithms, character 'a’ would occur frequently and character 'b’” infrequently,
which may affect how the method performs. On the other hand, beating the
naive algorithm with real-world data for pretty much all pattern sizes is def-
initely a good thing! Secondly, we have noted that one of the reasons this
method is fast is because it only counts matches; introducing (large numbers
of) wildcards would increase the number of matches and hence the amount
of work needed.

3.4.3 K-Mismatches For Small K

Unfortunately, the results comparing Amir et al’s algorithm with the naive
approach have not been so successful. Part of the reason for was mentioned
in the methodology above (Section 3.4.1): it was not possible to construct

22

worst-case performance test cases which also fairly asses running of Amir’s
algorithm.

Secondly, the implementation was hampered by problems with Suffix Tree
libraries. Initially, a fairly simple library by Tsadok and Yona [14] was used,
however it did not support LCA queries. A different library called SDSL
from the University of Ulm was then used, as it did support LCA queries [9].
One of the focuses of SDSL is compression, so it is probably to be expected
that it may not be as fast as other implementations. After removing as much
of the compression as possible, an updated library from the author and some
testing with compiler flags, SDSL took around twice as long to build a suffix
tree as the former library. This was a manageable difference, however the real
performance hit seems to be in traversal of the suffix tree, which is required
to generate the p-represenations [5]. In this case, SDSL was 5-10x slower
than the previous library. A compromise could be made by creating suffix
trees with both libraries: one with SDSL used to perform LCA queries and
a second with Tsadko and Yona’s library to create the p-representations.

Even with this approach, a comparison between the naive method could
only be made by ezcluding the build time. Results achieved here were still
quite limited. Perhaps the most interesting is that reducing the number of
frequent characters needed for case 2 to operate would be profitable: it was
possible to extract two different patterns of the same size from an English
text and using the same text and same value for k, one would not quite have
enough frequent characters to fall into case 2 and would run more than 10x
slower than the input that had enough frequent characters to use case 2! The
likely culprit for this difference is the fact that a large number of matches
with FFTs were performed, resulting in high overhead. It should be possible
to adjust this threshold to a - 2v/k for some o < 1 without affecting the
time complexity. However, there was not enough time to investigate this.
Generally, for larger values of k it was found that if case 2 was used, this was
faster than the naive approach but if case 1 was used, it was much slower
than the naive method.

Secondly, it was found that for small values of k, the run-times of the
nalve method and Amir’s algorithm were fairly equal, even though for small
k, the significantly faster case 2 was almost always used and build time was
excluded. Part of the reason for this is that a fairly large number of LCE
queries are needed — each LCE query between text and pattern requires up to
3 pattern-pattern LCE queries and we must perform O(k) text-pattern LCE
queries. In addition, the constant problems hampered testing such that very
little was done with larger inputs — all testing was performed on pattern sizes
less than 20,000. The biggest contributing factor perhaps though was that
the naive method was operating no-where near its worst-case performance;

23

a way to test both algorithms fairly is really needed.

4 Further Work and Open Questions

During this 10 week project, a number of questions have arisen that there
has not been time to answer. The following is a list of further work that I
would do if there were more time, in no particular order.

Floating Point Inaccuracies In The FFT

One of the reasons for using number theoretic algorithms in solving the
matching with don’t cares problem is that the FF'T uses floating-point arith-
metic and so may suffer from numerical accuracy. It would be nice to try
and find any practical implications this has for solving the problem. FFTW’s
accuracy benchmarks suggest an imprecision which is generally less than
1 x 107% for double-precision real data in a 1D transform [8]. This would
suggest that accuracy is unlikely to be a problem, even if we are performing
hundreds of thousands of transforms (consider the O(nlogm) algorithm with
a text size in the millions and a short pattern size — a lot of transforms are
performed) and it would certainly require that the error is generally either
positive or negative as otherwise errors wouldn’t accumulate. However, this
observation does ignore the multiplication step required in order to perform
a convolution — any errors here could be amplified so it is still not entirely
clear how the errors would affect this particular problem.

Does The Abrahamson/Kosaraju Algorithm Have A Useful Appli-
cation For Matching With Don’t Cares?

As was mentioned above, it is possible to modify the algorithm for finding
the Hamming Distance at all locations to solve the matching with don’t cares
problem. Since the Abrahamson/Kosaraju method outperformed the naive
approach for very small pattern sizes, it may be useful for this problem as
well. There are some caveats discussed at the end of section 3.4.2 however.

Memory Usage

No attempt to study the memory usage has been made for any of these al-
gorithms and this is clearly an important practical consideration. Generally
the absolute ordering of algorithms in terms of memory usage is probably
clear. For example, the naive method in both algorithms requires no addi-
tional memory and the O(nlogm) algorithm for solving matching with don’t

24

cares is obviously going to use less than O(nlogn) approach. On the other
hand, quantifying the amount of memory used would be a good addition to
the project.

False Positives In Monte-Carlo Methods

The randomized algorithm given for solving the matching with don’t cares
problem when there are no wild cards in the text is not a straightforward
implementation of Kalai’s method [12], although it does use a broadly sim-
ilar idea. However, there is a difference in the way the inputs are mapped
to random numbers and how the random numbers are exactly used. As an
example, Kalai’s method does not include an explicit mapping of charac-
ters in the alphabet to random values and so allows the possibility of two
different characters mapping to the same value. This is not possible in the
other method. It would be interesting to investigate both the run-time of
these two implementations and the rate of false positives produced. Anecdo-
tally, Kalai’s method seemed to produce more false-positives; a much more
thorough exploration of this is needed to give any actual results.

More Complete Results For K-Mismatches

It seems likely that the algorithms for solving k-mismatches with small k are
impractical compared to the naive approach, especially since build time of
the required data structures had to be excluded to allow any kind of realistic
comparison. However, results have been limited and even if this is the case
there are still some interesting questions to be answered. For example, it is
clear that as k tends to m, the naive method will become worse, so it would
be useful to determine at what point this is.

5 Code Library

One of the aims of this project was to create libraries of code to solve these
pattern matching problems. The current release of the library can be found at
www.bsmithers.co.uk/libstringpedia-0.2.tar.gz. At present, it supports
all of the matching with don’t care implementations discussed in this report,
but only the naive and Abrahamson/Kosaraju methods for solving the k-
mismatches problem. It was felt that Amir’s method isn’t sufficiently well
developed to be released at this stage.

The library provides two ways of interfacing with the code: either through
a command line ‘harness’ (which takes input from a text file and produces
timing information that can be written to a data file.) or by including the

25

stringpedia.h header file and linking against libstringpedia.a in your own
program. Further documentation and examples can be found by downloading
the above file.

There are a number of improvements to the library that would be desir-
able to make but there has been insufficient time time to complete at this
stage, mostly because time is needed in order to understand the relevant
tools.

e Use the GNU Build Tools system (e.g. Automake and configure) —
currently the install does not provide a mechanism for setting the install
location and the option to compile without FLINT is a little messy. A
configure script would solve these problems.

e Use Doxygen or similar for improved documentation.
e Include Amir’s method is not included.

e Expose the full set of options to the command line harness. Most are
available, but not all.

e Provide support in the linked library for loading from files and giving
timings.

e Further testing. Code has currently only been tested on Ubuntu 9.04
and 9.10, with a recent version of gcc.

Aside from matching with don’t cares and k-mismatches, the library also
provides two other features:

e [t automates the generation of Wisdom. See generatewisdom.sh or the
readme for more details.

e [t includes a program for extracting a text and pattern from a given
source to be used as an input to the ‘harnesses’. It allows text and
pattern lengths to be specified and strips out newlines and other special
characters.

6 Final Remarks

Overall this project has been an enjoyable experience. My initial aim was for
it to help me decide whether or no I wished to persue a PhD after I graduate.
Wether or not I'm closer to that decision I'm not sure, but I do feel I have a
better understanding of what it may be like. On the otherhand, I don’t think

26

I've entirely experienced the extremes of PhD study: going weeks without
really achieving anything or the elation of discovering something new, but I
have seen this in a limited sense.

I hope that I can find time in the future to make the improvements to the
library, investigate some of the further work and keep StringPedia updated.

Finally, I would like to thank Raphael Clifford for agreeing to supervise this
project and also Ben Sach and Markus Jalsenius for all their help over the
summer.

References

[1] K. Abrahamson. Generalized string matching, STAM journal on Com-
puting, 16(6):1039-1051, 1987.

[2] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string
matching with k mis-matches, Journal of Algorithms, 50(2):257-275,
2004.

[3] P. Clifford, R. Clifford. Simple Deterministic Wildcard Matching, Infor-
mation Processing Letters 101 (2007) 53-54

[4] R. Clifford. Advanced Algorithms Lecture Notes, Universty of Bristol,
http://www.cs.bris.ac.uk/Teaching/Resources/COMSM1402/lect11-
2008.pdf

[5] R. Clifford and B. Sach. Psuedo-realtime Pattern Matching: Closing the
Gap, CPM 2010, LNCS 6129, pp 101-111

[6] T. H. Cormack, C. E. Leisersen, R. L. Rivest and C. Stein. Introduction
to Algorithms, MIT press, 3rd edition

[7] P. Ferragina and G. Navarro. Universities of Pisa and Chile,
http://pizzachili.dec.uchile.cl/

[8] M. Frigo and S. G. Johnson. (FFTW) Fastest Fourier Trans-
form in the West, Massachusetts Institute of Technology,
http://www.fftw.org/accuracy /index.html

9] S. Gog. Succint Data Structure Library, Ulm University , Germany
http://www.uni-ulm.de/in/theo/research /sdsl

27

[10] D. Gusfield. Algorithms on Strings, Trees and Sequences, Cambridge
University Press, 1997, Section 2 pp 87-207

[11] W. B. Hart. Fast Library for Number Theory: an introduction,
http://sage.math.washington.edu/home/wbhart /flint-extended-
abstract.pdf

[12] A. Kalai. Efficient Pattern-Matching With Don’t Cares, Proceedings of
the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 655-656

[13] S. R. Kosaraju. Efficient string matching, Manuscript, 1987.

[14] D. Tsadok and S. Yona. University of Haifa, Israel,
http://mila.cs.technion.ac.il/ yona/suffix_tree/

28

